An ILS consists of two independent sub-systems, one providing lateral guidance (localizer), the other vertical guidance (glide slope or glide path) to aircraft approaching a runway. Aircraft guidance is provided by the ILS receivers in the aircraft by performing a modulation depth comparison.
The emission patterns of the localizer and glideslope signals. Note that the glide slope beams are partly formed by the reflection of the glideslope aerial in the ground plane.
A localizer (LOC, or LLZ until ICAO designated LOC as the official acronym)[1] antenna array is normally located beyond the departure end of the runway and generally consists of several pairs of directional antennas.
Two signals are transmitted on one out of 40 ILS channels in the carrier frequency range between 108.10 MHz and 111.95 MHz (with the 100 kHz first decimal digit always odd, so 108.10, 108.15, 108.30, and so on are LOC frequencies but 108.20, 108.25, 108.40, and so on are not). One is modulated at 90 Hz, the other at 150 Hz and these are transmitted from separate but co-located antennas. Each antenna transmits a narrow beam, one slightly to the left of the runway centerline, the other to the right.
The localizer receiver on the aircraft measures the difference in the depth of modulation (DDM) of the 90 Hz and 150 Hz signals. For the localizer, the depth of modulation for each of the modulating frequencies is 20 percent. The difference between the two signals varies depending on the position of the approaching aircraft from the centerline.
If there is a predominance of either 90 Hz or 150 Hz modulation, the aircraft is off the centerline. In the cockpit, the needle on the horizontal situation indicator (HSI, the instrument part of the ILS), or course deviation indicator (CDI), will show that the aircraft needs to fly left or right to correct the error to fly down the center of the runway. If the DDM is zero, the aircraft is on the centerline of the localizer coinciding with the physical runway centerline.
A glide slope (GS) or glide path (GP) antenna array is sited to one side of the runway touchdown zone.
The GP signal is transmitted on a carrier frequency between 328.6 and 335.4 MHz using a technique similar to that of the localizer. The centerline of the glide slope signal is arranged to define a glide slope of approximately 3° above horizontal (ground level). The beam is 1.4° deep; 0.7° below the glideslope centerline and 0.7° above the glideslope centerline.
These signals are displayed on an indicator in the instrument panel. This instrument is generally called the omni-bearing indicator or nav indicator. The pilot controls the aircraft so that the indications on the instrument (i.e., the course deviation indicator) remain centered on the display. This ensures the aircraft is following the ILS centreline (i.e., it provides lateral guidance). Vertical guidance, shown on the instrument by the glideslope indicator, aids the pilot in reaching the runway at the proper touchdown point. Many aircraft possess the ability to route signals into the autopilot, allowing the approach to be flown automatically by the autopilot.
http://en.wikipedia.org/wiki/Instrument_landing_system
A VOR ground station sends out a master signal, and a highly directional second signal that varies in phase 30 times a second compared to the master. This signal is timed so that the phase varies as the secondary antenna spins, such that when the antenna is 90 degrees from north, the signal is 90 degrees out of phase of the master. By comparing the phase of the secondary signal to the master, the angle (bearing) to the station can be determined. This bearing is then displayed in the cockpit of the aircraft, and can be used to take a fix as in earlier radio direction finding (RDF) systems, although it is, in theory, easier to use and more accurate. This line of position is called the "radial" from the VOR. The intersection of two radials from different VOR stations on a chart provides the position of the aircraft. VOR stations are fairly short range, the signals have a range of about 200 miles.
http://en.wikipedia.org/wiki/VHF_omnidirectional_range
The VOR article also explains the types of cockpit instruments.
"This information is then fed to one of four common types of indicators:
An Omni-Bearing Indicator (OBI) is the typical light-airplane VOR indicator...
A Horizontal Situation Indicator (HSI) is considerably more expensive and complex...
A Radio Magnetic Indicator (RMI), developed previous to the HSI,...
An Area Navigation (RNAV) system is an onboard computer, with display...
Note that the information is NOT displayed on an "ADF gauge" (ADF uses an entirely different system and frequency range) but both may be displayed on a RMI (sometimes selectable to show 2 VOR signals, two LF (NDB or other) or one of each).